资源类型

期刊论文 374

会议视频 4

年份

2023 29

2022 33

2021 32

2020 22

2019 27

2018 12

2017 20

2016 17

2015 23

2014 18

2013 12

2012 20

2011 7

2010 14

2009 13

2008 22

2007 16

2006 6

2005 10

2004 3

展开 ︾

关键词

DX桩 3

三点弯曲梁 2

农业面源污染 2

力学性能 2

单边直线感应电机 2

即时医疗 2

高压 2

2D—3D配准 1

COVID-19 1

Casimir力 1

Chebyshev多项式 1

Cu(In 1

DNA结构 1

DPP);分布式功率转换器;开关电容转换器 1

GIS 1

Ga)Se2 1

LMS 1

Lagrange方程 1

MPPT);差分功率处理(Differential power processing 1

展开 ︾

检索范围:

排序: 展示方式:

Sub-nanometer finishing of polycrystalline tin by inductively coupled plasma-assisted cutting

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0751-5

摘要: Polycrystalline tin is an ideal excitation material for extreme ultraviolet light sources. However, the existence of grain boundary (GB) limits the surface roughness of polycrystalline tin after single-point diamond turning (SPDT). In this work, a novel method termed inductively coupled plasma (ICP)-assisted cutting was developed for the sub-nanometer finishing of polycrystalline tin. The relationship between ICP power, processing time, and modification depth was established by thermodynamic simulation, and the fitted heat transfer coefficient of polycrystalline tin was 540 W/(m2·K). The effects of large-thermal-gradient ICP treatment on the microstructure of polycrystalline tin were studied. After 0.9 kW ICP processing for 3.0 s, corresponding to the temperature gradient of 0.30 K/µm, the grain size of polycrystalline tin was expanded from a size of approximately 20–80 μm to a millimeter scale. The Taguchi method was used to investigate the effects of rotational speed, depth of cut, and feed rate on SPDT. Experiments conducted based on the ICP system indicated that the plasma-assisted cutting method promoted the reduction of the influence of GB steps on the finishing of polycrystalline tin, thereby achieving a surface finish from 8.53 to 0.80 nm in Sa. The results of residual stress release demonstrated that the residual stress of plasma-assisted turning processing after 504 h stress release was 10.7 MPa, while that of the turning process without the ICP treatment was 41.6 MPa.

关键词: plasma-assisted cutting     polycrystalline tin     single-point diamond turning     surface roughness    

Recent advancements in optical microstructure fabrication through glass molding process

Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 46-65 doi: 10.1007/s11465-017-0425-2

摘要:

Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibration-assisted molding technology.

关键词: optical microstructure     microgroove     microlens     glass molding process     single-point diamond cutting    

Molecular dynamics modeling of a single diamond abrasive grain in grinding

Angelos P. MARKOPOULOS,Ioannis K. SAVVOPOULOS,Nikolaos E. KARKALOS,Dimitrios E. MANOLAKOS

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 168-175 doi: 10.1007/s11465-015-0337-y

摘要:

In this paper the nano-metric simulation of grinding of copper with diamond abrasive grains, using the molecular dynamics (MD) method, is considered. An MD model of nano-scale grinding, where a single diamond abrasive grain performs cutting of a copper workpiece, is presented. The Morse potential function is used to simulate the interactions between the atoms involved in the procedure. In the proposed model, the abrasive grain follows a curved path with decreasing depth of cut within the workpiece to simulate the actual material removal process. Three different initial depths of cut, namely 4 ?, 8 ? and 12 ?, are tested, and the influence of the depth of cut on chip formation, cutting forces and workpiece temperatures are thoroughly investigated. The simulation results indicate that with the increase of the initial depth of cut, average cutting forces also increase and therefore the temperatures on the machined surface and within the workpiece increase as well. Furthermore, the effects of the different values of the simulation variables on the chip formation mechanism are studied and discussed. With the appropriate modifications, the proposed model can be used for the simulation of various nano-machining processes and operations, in which continuum mechanics cannot be applied or experimental techniques are subjected to limitations.

关键词: molecular dynamics     abrasive process     chip formation     cutting force     temperature    

Fundamental frequency and testing mode of complicated elastic clamped-plate vibration

QI Hongyuan, GUAN Yiduo

《机械工程前沿(英文)》 2008年 第3卷 第4期   页码 360-364 doi: 10.1007/s11465-008-0084-4

摘要: Aimed at the modal analysis of complicated elastic clamped-plates, a trigonometric interpolation method of conformal mapping is applied to set up the mapping function between a complicated region and a unit dish region, and the fundamental frequency of the complicated vibrating region is analyzed with the help of the Galerkin method. Taking an elastic rectangle-plate with arc radius as an example, the testing mode frequency band of plates is determined by analyzing the fundamental frequency; meanwhile, according to hamming testing method of multi-point excitation to the single-point response, and by signal processing technology and its software programming, modal parameter recognition of the elastic clamped-plate is completed. Comparing the first order modal frequency with the theoretical fundament frequency, the validity of the testing mode method and theoretical analysis are verified.

关键词: multi-point excitation     rectangle-plate     single-point     processing technology     trigonometric interpolation    

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 631-644 doi: 10.1007/s11465-020-0599-x

摘要: The ever-increasing requirements for the scalable manufacturing of atomic-scale devices emphasize the significance of developing atomic-scale manufacturing technology. The mechanism of a single atomic layer removal in cutting is the key basic theoretical foundation for atomic-scale mechanical cutting. Material anisotropy is among the key decisive factors that could not be neglected in cutting at such a scale. In the present study, the crystallographic orientation effect on the cutting-based single atomic layer removal of monocrystalline copper is investigated by molecular dynamics simulation. When undeformed chip thickness is in the atomic scale, two kinds of single atomic layer removal mechanisms exist in cutting-based single atomic layer removal, namely, dislocation motion and extrusion, due to the differing atomic structures on different crystallographic planes. On close-packed crystallographic plane, the material removal is dominated by the shear stress-driven dislocation motion, whereas on non-close packed crystallographic planes, extrusion-dominated material removal dominates. To obtain an atomic, defect-free processed surface, the cutting needs to be conducted on the close-packed crystallographic planes of monocrystalline copper.

关键词: ACSM     single atomic layer removal mechanism     crystallographic orientation effect     mechanical cutting     Manufacturing III    

人造金刚石工业在我国迅猛崛起

刘广志

《中国工程科学》 2000年 第2卷 第5期   页码 31-33

摘要:

论述了人造金刚石的发展历程及其在我国的迅猛发展,目前我国的人造金刚石产量已居世界首位。进入20世纪末,人造金刚石新品种不断涌现,CVD、卡邦、世界首颗超厘米级C60单晶也研制成功。

关键词: 人造金刚石     人造金刚石膜     复合片    

Multiple damage detection in complex bridges based on strain energy extracted from single point measurement

Alireza ARABHA NAJAFABADI, Farhad DANESHJOO, Hamid Reza AHMADI

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 722-730 doi: 10.1007/s11709-020-0624-5

摘要: Strain Energy of the structure can be changed with the damage at the damage location. The accurate detection of the damage location using this index in a force system is dependent on the degree of accuracy in determining the structure deformation function before and after damage. The use of modal-based methods to identify damage in complex bridges is always associated with problems due to the need to consider the effects of higher modes and the adverse effect of operational conditions on the extraction of structural modal parameters. In this paper, the deformation of the structure was determined by the concept of influence line using the Betti-Maxwell theory. Then two damage detection indicators were developed based on strain energy variations. These indices were presented separately for bending and torsion changes. Finite element analysis of a five-span concrete curved bridge was done to validate the stated methods. Damage was simulated by decreasing stiffness at different sections of the deck. The response regarding displacement of a point on the deck was measured along each span by passing a moving load on the bridge at very low speeds. Indicators of the strain energy extracted from displacement influence line and the strain energy extracted from the rotational displacement influence line (SERIL) were calculated for the studied bridge. The results show that the proposed methods have well identified the location of the damage by significantly reducing the number of sensors required to record the response. Also, the location of symmetric damages is detected with high resolution using SERIL.

关键词: damage detection     strain energy     influence line     complex bridges     rotation displacement    

Design and locomotion analysis of two kinds of rolling expandable mobile linkages with a single degree

Yanlin HAO, Yaobin TIAN, Jianxu WU, Yezhuo LI, Yan-An YAO

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 365-373 doi: 10.1007/s11465-020-0585-3

摘要: This study presents two kinds of rolling robots that are able to roll by deforming their outer shapes with a single degree of freedom. Each robot is an essential multi-loop planar expandable linkage constructed by a concave outer loop and several inner parallelogram loops. In this study, the mechanical design of the robots is introduced. Dynamic rolling process is further analyzed on the basis of zero moment point method, and a morphing strategy is proposed to guarantee a stable dynamic rolling process. A novel passive rolling locomotion is also developed, which enables the robots to roll and stand on a slope. To verify the design, two prototypes are manufactured, wherein the dynamic and passive rolling locomotion are carried out.

关键词: rolling locomotion     expandable mechanism     mechanism design     zero moment point (ZMP) analysis    

Recognition of diamond grains on surface of fine diamond grinding wheel

HUO Fengwei, JIN Zhuji, KANG Renke, GUO Dongming, YANG Chun

《机械工程前沿(英文)》 2008年 第3卷 第3期   页码 325-331 doi: 10.1007/s11465-008-0071-9

摘要: The accurate evaluation of grinding wheel surface topography, which is necessary for the investigation of the grinding principle, optimism, modeling, and simulation of a grinding process, significantly depends on the accurate recognition of abrasive grains from the measured wheel surface. A detailed analysis of the grain size distribution characteristics and grain profile wavelength of the fine diamond grinding wheel used for ultra-precision grinding is presented. The requirements of the spatial sampling interval and sampling area for instruments to measure the surface topography of a diamond grinding wheel are discussed. To recognize diamond grains, digital filtering is used to eliminate the high frequency disturbance from the measured 3D digital surface of the grinding wheel, the geometric features of diamond grains are then extracted from the filtered 3D digital surface, and a method based on the grain profile frequency characteristics, diamond grain curvature, and distance between two adjacent diamond grains is proposed. A 3D surface profiler based on scanning white light interferometry is used to measure the 3D surface topography of a #3000 mesh resin bonded diamond grinding wheel, and the diamond grains are then recognized from the 3D digital surface. The experimental result shows that the proposed method is reasonable and effective.

关键词: topography     frequency disturbance     filtering     analysis     wavelength    

Ultra-precision ductile grinding of BK7 using super abrasive diamond wheel

ZHAO Qingliang, Brinksmeier Ekkard, Riemer Oltmann, Rickens Kai

《机械工程前沿(英文)》 2007年 第2卷 第3期   页码 350-355 doi: 10.1007/s11465-007-0061-3

摘要: In this paper, a novel conditioning technique using copper bonded diamond grinding wheels of 91 yD grain size and electrolytic in-process dressing (ELID) is first developed to precisely and effectively condition a nickel-electroplated monolayer coarse-grained diamond grinding wheel of 151 μm grain size. Under optimised conditioning parameters, the super abrasive diamond wheel was well conditioned in terms of a minimized run-out error and flattened diamond grain surfaces of constant peripheral envelope. The conditioning force was monitored by a force transducer, while the modified wheel surface status was in-situ monitored by a coaxial optical distance measurement system. Finally, the grinding experiment on BK7 was conducted using the well-conditioned wheel with the corresponding surface morphology and subsurface damage measured by atomic force microscope (AFM) and scanning electric microscope (SEM), respectively. The experimental result shows that the newly developed conditioning technique is applicable and feasible to ductile grinding optical glass featuring nano scale surface roughness, indicating the potential of super abrasive diamond wheels in ductile machining brittle materials.

关键词: ELID     peripheral     electrolytic in-process     nickel-electroplated monolayer     measurement    

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction aroundthe cutting zone

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 81-88 doi: 10.1007/s11465-019-0561-y

摘要: Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method (FEM) cutting simulation. In this study, a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting; estimate the stress distributions on the rake, edge, and clearance faces of the tool; and predict the stagnation point location and the minimum cutting thickness. The friction modeling is established by determining the distribution of normal and shear stress. Then, it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness. The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation. Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling. Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface, thereby validating the modeling method of the minimum cutting thickness in micro cutting.

关键词: tool friction     minimum cutting thickness     finite element method     tool edge radius     micro cutting    

A review on ductile mode cutting of brittle materials

Elijah Kwabena ANTWI, Kui LIU, Hao WANG

《机械工程前沿(英文)》 2018年 第13卷 第2期   页码 251-263 doi: 10.1007/s11465-018-0504-z

摘要:

Brittle materials have been widely employed for industrial applications due to their excellent mecha-nical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.

关键词: ductile mode cutting     brittle materials     critical undeformed chip thickness     brittle-ductile transition     subsurface damage     molecular dynamic simulation    

Cutting performance of surgical electrodes by constructing bionic microstriped structures

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0728-9

摘要: Surgical electrodes rely on thermal effect of high-frequency current and are a widely used medical tool for cutting and coagulating biological tissue. However, tissue adhesion on the electrode surface and thermal injury to adjacent tissue are serious problems in surgery that can affect cutting performance. A bionic microstriped structure mimicking a banana leaf was constructed on the electrode via nanosecond laser surface texturing, followed by silanization treatment, to enhance lyophobicity. The effect of initial, simple grid-textured, and bionic electrodes with different wettabilities on tissue adhesion and thermal injury were investigated using horizontal and vertical cutting modes. Results showed that the bionic electrode with high lyophobicity can effectively reduce tissue adhesion mass and thermal injury depth/area compared with the initial electrode. The formation mechanism of adhered tissue was discussed in terms of morphological features, and the potential mechanism for antiadhesion and heat dissipation of the bionic electrode was revealed. Furthermore, we evaluated the influence of groove depth on tissue adhesion and thermal injury and then verified the antiadhesion stability of the bionic electrode. This study demonstrates a promising approach for improving the cutting performance of surgical electrodes.

关键词: surgical electrodes     tissue adhesion     thermal injury     bionic structures     cutting performance     medical tools    

Edge preparation methods for cutting tools: a review

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0766-y

摘要: Edge preparation can remove cutting edge defects, such as burrs, chippings, and grinding marks, generated in the grinding process and improve the cutting performance and service life of tools. Various edge preparation methods have been proposed for different tool matrix materials, geometries, and application requirements. This study presents a scientific and systematic review of the development of tool edge preparation technology and provides ideas for its future development. First, typical edge characterization methods, which associate the microgeometric characteristics of the cutting edge with cutting performance, are briefly introduced. Then, edge preparation methods for cutting tools, in which materials at the cutting edge area are removed to decrease defects and obtain a suitable microgeometry of the cutting edge for machining, are discussed. New edge preparation methods are explored on the basis of existing processing technologies, and the principles, advantages, and limitations of these methods are systematically summarized and analyzed. Edge preparation methods are classified into two categories: mechanical processing methods and nontraditional processing methods. These methods are compared from the aspects of edge consistency, surface quality, efficiency, processing difficulty, machining cost, and general availability. In this manner, a more intuitive understanding of the characteristics can be gained. Finally, the future development direction of tool edge preparation technology is prospected.

关键词: edge preparation method     preparation principle     cutting edge geometry     edge characterization     tool performance    

蛇绿岩型金刚石——探索深部碳循环的新窗口 Review

连东洋, 杨经绥

《工程(英文)》 2019年 第5卷 第3期   页码 406-420 doi: 10.1016/j.eng.2019.02.006

摘要:

近些年来,在全球不同地区的一些蛇绿岩地幔橄榄岩和铬铁矿中发现了微粒金刚石和其他异常矿物,包括呈斯石英假象的柯石英、碳化硅、青松矿、自然元素矿物、金属合金以及一些壳源矿物(如锆石、石英、角闪石和金红石)。西藏罗布莎铬铁矿中的柯石英和蓝晶石呈针柱状集合体交生在一起,产在钛铁合金矿物的边部,这些柯石英集合体可能代表了更高压相的斯石英发生退变后形成的假象矿物。蓝晶石、柯石英、青松矿包裹体(一种立方晶系的氮化硼)以及TiO2 II(金红石的高压相矿物)等矿物的发现指示铬铁矿形成的温压条件可能达到10~15 GPa、约1300 ℃,深度达大于380 km 的地幔转换带(mantle transition zone,MTZ)深度。碳化硅、自然元素矿物以及金属合金矿物的产出指示了一个超还原的地质环境。与金伯利岩、变质岩和陨石中的金刚石相比,蛇绿岩中的金刚石具有较轻的碳同位素组成以及不同类型的矿物包裹体,指示其碳物质可能源于地表的有机碳,经历了俯冲板片在深部的再循环作用。金刚石在蛇绿岩地幔橄榄岩和铬铁矿中的普遍存在,表明大洋地幔可能是一个重要的碳储库。蛇绿岩型金刚石的发现证明了浅部碳可以俯冲至深部地幔。蛇绿岩型金刚石为研究地球的深部碳循环提供了新窗口。

关键词: 蛇绿岩型金刚石     柯石英     斯石英     豆荚状铬铁矿     地幔过渡带    

标题 作者 时间 类型 操作

Sub-nanometer finishing of polycrystalline tin by inductively coupled plasma-assisted cutting

期刊论文

Recent advancements in optical microstructure fabrication through glass molding process

Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG

期刊论文

Molecular dynamics modeling of a single diamond abrasive grain in grinding

Angelos P. MARKOPOULOS,Ioannis K. SAVVOPOULOS,Nikolaos E. KARKALOS,Dimitrios E. MANOLAKOS

期刊论文

Fundamental frequency and testing mode of complicated elastic clamped-plate vibration

QI Hongyuan, GUAN Yiduo

期刊论文

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

期刊论文

人造金刚石工业在我国迅猛崛起

刘广志

期刊论文

Multiple damage detection in complex bridges based on strain energy extracted from single point measurement

Alireza ARABHA NAJAFABADI, Farhad DANESHJOO, Hamid Reza AHMADI

期刊论文

Design and locomotion analysis of two kinds of rolling expandable mobile linkages with a single degree

Yanlin HAO, Yaobin TIAN, Jianxu WU, Yezhuo LI, Yan-An YAO

期刊论文

Recognition of diamond grains on surface of fine diamond grinding wheel

HUO Fengwei, JIN Zhuji, KANG Renke, GUO Dongming, YANG Chun

期刊论文

Ultra-precision ductile grinding of BK7 using super abrasive diamond wheel

ZHAO Qingliang, Brinksmeier Ekkard, Riemer Oltmann, Rickens Kai

期刊论文

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction aroundthe cutting zone

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

期刊论文

A review on ductile mode cutting of brittle materials

Elijah Kwabena ANTWI, Kui LIU, Hao WANG

期刊论文

Cutting performance of surgical electrodes by constructing bionic microstriped structures

期刊论文

Edge preparation methods for cutting tools: a review

期刊论文

蛇绿岩型金刚石——探索深部碳循环的新窗口

连东洋, 杨经绥

期刊论文